Modular Exponentiation (Power in Modular Arithmetic)






Given three numbers x, y and p, compute (xy) % p.


Examples :


Input:  x = 2, y = 3, p = 5
Output: 3
Explanation: 2^3 % 5 = 8 % 5 = 3.

Input: x = 2, y = 5, p = 13
Output: 6
Explanation: 2^5 % 13 = 32 % 13 = 6.


We have discussed recursive and iterative solutions for power.










Below is discussed iterative solution.







filter_none



edit

close



play_arrow



link

brightness_4

code















/* Iterative Function to calculate (x^y) in O(log y) */

int power(int x, unsigned int y)

{

����int res = 1;���� // Initialize result

��

����while (y > 0)

����{

��������// If y is odd, multiply x with result

��������if (y & 1)

������������res = res*x;

��

��������// n must be even now

��������y = y>>1; // y = y/2

��������x = x*x;� // Change x to x^2

����}

����return res;

}








chevron_right






The problem with above solutions is, overflow may occur for large value of n or x. Therefore, power is generally evaluated under modulo of a large number.


Below is the fundamental modular property that is used for efficiently computing power under modular arithmetic.




(ab) mod p = ( (a mod p) (b mod p) ) mod p

For example a = 50, b = 100, p = 13
50 mod 13 = 11
100 mod 13 = 9

(50 * 100) mod 13 = ( (50 mod 13) * (100 mod 13) ) mod 13
or (5000) mod 13 = ( 11 * 9 ) mod 13
or 8 = 8

Below is the implementation based on above property.


C









filter_none



edit

close



play_arrow



link

brightness_4

code















// Iterative C program to compute modular power

#include <stdio.h>


/* Iterative Function to calculate (x^y)%p in O(log y) */

int power(int x, unsigned int y, int p)

{

����int res = 1;����� // Initialize result


����x = x % p;� // Update x if it is more than or�

����������������// equal to p


����while (y > 0)

����{

��������// If y is odd, multiply x with result

��������if (y & 1)

������������res = (res*x) % p;


��������// y must be even now

��������y = y>>1; // y = y/2

��������x = (x*x) % p;��

����}

����return res;

}


// Driver program to test above functions

int main()

{

���int x = 2;

���int y = 5;

���int p = 13;

���printf("Power is %u", power(x, y, p));

���return 0;

}








chevron_right







Java









filter_none



edit

close



play_arrow



link

brightness_4

code















// Iterative Java program to�

// compute modular power

import java.io.*;


class GFG {

�����

����/* Iterative Function to calculate

�������(x^y)%p in O(log y) */

����static int power(int x, int y, int p)

����{

��������// Initialize result

��������int res = 1;�����

��������

��������// Update x if it is more��

��������// than or equal to p

��������x = x % p;�

�����

��������while (y > 0)

��������{

������������// If y is odd, multiply x

������������// with result

������������if((y & 1)==1)

����������������res = (res * x) % p;

�����

������������// y must be even now

������������// y = y / 2

������������y = y >> 1;�

������������x = (x * x) % p;�

��������}

��������return res;

����}


����// Driver Program to test above functions

����public static void main(String args[])

����{

��������int x = 2;

��������int y = 5;

��������int p = 13;

��������System.out.println("Power is " + power(x, y, p));

����}

}


// This code is contributed by Nikita Tiwari.








chevron_right







Python3









filter_none



edit

close



play_arrow



link

brightness_4

code















# Iterative Python3 program

# to compute modular power


# Iterative Function to calculate

# (x^y)%p in O(log y)�

def power(x, y, p) :

����res = 1���� # Initialize result


����# Update x if it is more

����# than or equal to p

����x = x % p�


����while (y > 0) :

���������

��������# If y is odd, multiply

��������# x with result

��������if ((y & 1) == 1) :

������������res = (res * x) % p


��������# y must be even now

��������y = y >> 1����� # y = y/2

��������x = (x * x) % p

���������

����return res

�����


# Driver Code


x = 2; y = 5; p = 13

print("Power is ", power(x, y, p))



# This code is contributed by Nikita Tiwari.








chevron_right







C#









filter_none



edit

close



play_arrow



link

brightness_4

code















// Iterative C# program to�

// compute modular power

class GFG�

{


/* Iterative Function to calculate

(x^y)%p in O(log y) */

static int power(int x, int y, int p)

{

����// Initialize result

����int res = 1;�����

�����

����// Update x if it is more�

����// than or equal to p

����x = x % p;�


����while (y > 0)

����{

��������// If y is odd, multiply�

��������// x with result

��������if((y & 1) == 1)

������������res = (res * x) % p;


��������// y must be even now

��������// y = y / 2

��������y = y >> 1;�

��������x = (x * x) % p;�

����}

����return res;

}


// Driver Code

public static void Main()

{

����int x = 2;

����int y = 5;

����int p = 13;

����System.Console.WriteLine("Power is " +�

������������������������������power(x, y, p));

}

}


// This code is contributed by mits








chevron_right







PHP









filter_none



edit

close



play_arrow



link

brightness_4

code















<?php

// Iterative PHP program to�

// compute modular power


// Iterative Function to�

// calculate (x^y)%p in O(log y)�

function power($x, $y, $p)

{

����// Initialize result

����$res = 1;�


����// Update x if it is more�

����// than or equal to p

����$x = $x % $p;�


����while ($y > 0)

����{

��������// If y is odd, multiply

��������// x with result

��������if ($y & 1)

������������$res = ($res * $x) % $p;


��������// y must be even now

���������

��������// y = $y/2

��������$y = $y >> 1;�

��������$x = ($x * $x) % $p;�

����}

����return $res;

}


// Driver Code

$x = 2;

$y = 5;

$p = 13;

echo "Power is ", power($x, $y, $p);


// This code is contributed by aj_36

?>








chevron_right








Output :


 Power is 6

Time Complexity of above solution is O(Log y).



Modular exponentiation (Recursive)


This article is contributed by Shivam Agrawal. Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.











My Personal Notes
arrow_drop_up









Improved By : jit_t, rd10, Mithun Kumar