HeapSort
Heap sort is a comparison based sorting technique based on Binary Heap data structure. It is similar to selection sort where we first find the maximum element and place the maximum element at the end. We repeat the same process for remaining element.
What is Binary Heap?
Let us first define a Complete Binary Tree. A complete binary tree is a binary tree in which every level, except possibly the last, is completely filled, and all nodes are as far left as possible (Source Wikipedia)
A Binary Heap is a Complete Binary Tree where items are stored in a special order such that value in a parent node is greater(or smaller) than the values in its two children nodes. The former is called as max heap and the latter is called min heap. The heap can be represented by binary tree or array.
Why array based representation for Binary Heap?
Since a Binary Heap is a Complete Binary Tree, it can be easily represented as array and array based representation is space efficient. If the parent node is stored at index I, the left child can be calculated by 2 * I + 1 and right child by 2 * I + 2 (assuming the indexing starts at 0).
Heap Sort Algorithm for sorting in increasing order:
1. Build a max heap from the input data.
2. At this point, the largest item is stored at the root of the heap. Replace it with the last item of the heap followed by reducing the size of heap by 1. Finally, heapify the root of tree.
3. Repeat above steps while size of heap is greater than 1.
How to build the heap?
Heapify procedure can be applied to a node only if its children nodes are heapified. So the heapification must be performed in the bottom up order.
Lets understand with the help of an example:
Input data: 4, 10, 3, 5, 1
4(0)
/ \
10(1) 3(2)
/ \
5(3) 1(4)
The numbers in bracket represent the indices in the array
representation of data.
Applying heapify procedure to index 1:
4(0)
/ \
10(1) 3(2)
/ \
5(3) 1(4)
Applying heapify procedure to index 0:
10(0)
/ \
5(1) 3(2)
/ \
4(3) 1(4)
The heapify procedure calls itself recursively to build heap
in top down manner.
C++
// C++ program for implementation of Heap Sort #include <iostream> � �using namespace std; � �// To heapify a subtree rooted with node i which is // an index in arr[]. n is size of heap void heapify( int arr[], int n, int i) { ���� int largest = i; // Initialize largest as root ���� int l = 2*i + 1; // left = 2*i + 1 ���� int r = 2*i + 2; // right = 2*i + 2 � ����� // If left child is larger than root ���� if (l < n && arr[l] > arr[largest]) �������� largest = l; � ����� // If right child is larger than largest so far ���� if (r < n && arr[r] > arr[largest]) �������� largest = r; � ����� // If largest is not root ���� if (largest != i) ���� { �������� swap(arr[i], arr[largest]); � ��������� // Recursively heapify the affected sub-tree �������� heapify(arr, n, largest); ���� } } � �// main function to do heap sort void heapSort( int arr[], int n) { ���� // Build heap (rearrange array) ���� for ( int i = n / 2 - 1; i >= 0; i--) �������� heapify(arr, n, i); � ����� // One by one extract an element from heap ���� for ( int i=n-1; i>=0; i--) ���� { �������� // Move current root to end �������� swap(arr[0], arr[i]); � ��������� // call max heapify on the reduced heap �������� heapify(arr, i, 0); ���� } } � �/* A utility function to print array of size n */ void printArray( int arr[], int n) { ���� for ( int i=0; i<n; ++i) �������� cout << arr[i] << " " ; ���� cout << "\n" ; } � �// Driver program int main() { ���� int arr[] = {12, 11, 13, 5, 6, 7}; ���� int n = sizeof (arr)/ sizeof (arr[0]); � ����� heapSort(arr, n); � ����� cout << "Sorted array is \n" ; ���� printArray(arr, n); } |
chevron_right
filter_none
Java
// Java program for implementation of Heap Sort public class HeapSort { ���� public void sort( int arr[]) ���� { �������� int n = arr.length; � ��������� // Build heap (rearrange array) �������� for ( int i = n / 2 - 1 ; i >= 0 ; i--) ������������ heapify(arr, n, i); � ��������� // One by one extract an element from heap �������� for ( int i=n- 1 ; i>= 0 ; i--) �������� { ������������ // Move current root to end ������������ int temp = arr[ 0 ]; ������������ arr[ 0 ] = arr[i]; ������������ arr[i] = temp; � ������������� // call max heapify on the reduced heap ������������ heapify(arr, i, 0 ); �������� } ���� } � ����� // To heapify a subtree rooted with node i which is ���� // an index in arr[]. n is size of heap ���� void heapify( int arr[], int n, int i) ���� { �������� int largest = i; // Initialize largest as root �������� int l = 2 *i + 1 ; // left = 2*i + 1 �������� int r = 2 *i + 2 ; // right = 2*i + 2 � ��������� // If left child is larger than root �������� if (l < n && arr[l] > arr[largest]) ������������ largest = l; � ��������� // If right child is larger than largest so far �������� if (r < n && arr[r] > arr[largest]) ������������ largest = r; � ��������� // If largest is not root �������� if (largest != i) �������� { ������������ int swap = arr[i]; ������������ arr[i] = arr[largest]; ������������ arr[largest] = swap; � ������������� // Recursively heapify the affected sub-tree ������������ heapify(arr, n, largest); �������� } ���� } � ����� /* A utility function to print array of size n */ ���� static void printArray( int arr[]) ���� { �������� int n = arr.length; �������� for ( int i= 0 ; i<n; ++i) ������������ System.out.print(arr[i]+ " " ); �������� System.out.println(); ���� } � ����� // Driver program ���� public static void main(String args[]) ���� { �������� int arr[] = { 12 , 11 , 13 , 5 , 6 , 7 }; �������� int n = arr.length; � ��������� HeapSort ob = new HeapSort(); �������� ob.sort(arr); � ��������� System.out.println( "Sorted array is" ); �������� printArray(arr); ���� } } |
chevron_right
filter_none
Python
# Python program for implementation of heap Sort � �# To heapify subtree rooted at index i. # n is size of heap def heapify(arr, n, i): ���� largest = i # Initialize largest as root ���� l = 2 * i + 1 ���� # left = 2*i + 1 ���� r = 2 * i + 2 ���� # right = 2*i + 2 � ����� # See if left child of root exists and is ���� # greater than root ���� if l < n and arr[i] < arr[l]: �������� largest = l � ����� # See if right child of root exists and is ���� # greater than root ���� if r < n and arr[largest] < arr[r]: �������� largest = r � ����� # Change root, if needed ���� if largest ! = i: �������� arr[i],arr[largest] = arr[largest],arr[i] # swap � ��������� # Heapify the root. �������� heapify(arr, n, largest) � �# The main function to sort an array of given size def heapSort(arr): ���� n = len (arr) � ����� # Build a maxheap. ���� for i in range (n, - 1 , - 1 ): �������� heapify(arr, n, i) � ����� # One by one extract elements ���� for i in range (n - 1 , 0 , - 1 ): �������� arr[i], arr[ 0 ] = arr[ 0 ], arr[i] # swap �������� heapify(arr, i, 0 ) � �# Driver code to test above arr = [ 12 , 11 , 13 , 5 , 6 , 7 ] heapSort(arr) n = len (arr) print ( "Sorted array is" ) for i in range (n): ���� print ( "%d" % arr[i]), # This code is contributed by Mohit Kumra |
chevron_right
filter_none
C#
// C# program for implementation of Heap Sort using System; � �public class HeapSort { ���� public void sort( int [] arr) ���� { �������� int n = arr.Length; � ��������� // Build heap (rearrange array) �������� for ( int i = n / 2 - 1; i >= 0; i--) ������������ heapify(arr, n, i); � ��������� // One by one extract an element from heap �������� for ( int i=n-1; i>=0; i--) �������� { ������������ // Move current root to end ������������ int temp = arr[0]; ������������ arr[0] = arr[i]; ������������ arr[i] = temp; � ������������� // call max heapify on the reduced heap ������������ heapify(arr, i, 0); �������� } ���� } � ����� // To heapify a subtree rooted with node i which is ���� // an index in arr[]. n is size of heap ���� void heapify( int [] arr, int n, int i) ���� { �������� int largest = i; // Initialize largest as root �������� int l = 2*i + 1; // left = 2*i + 1 �������� int r = 2*i + 2; // right = 2*i + 2 � ��������� // If left child is larger than root �������� if (l < n && arr[l] > arr[largest]) ������������ largest = l; � ��������� // If right child is larger than largest so far �������� if (r < n && arr[r] > arr[largest]) ������������ largest = r; � ��������� // If largest is not root �������� if (largest != i) �������� { ������������ int swap = arr[i]; ������������ arr[i] = arr[largest]; ������������ arr[largest] = swap; � ������������� // Recursively heapify the affected sub-tree ������������ heapify(arr, n, largest); �������� } ���� } � ����� /* A utility function to print array of size n */ ���� static void printArray( int [] arr) ���� { �������� int n = arr.Length; �������� for ( int i=0; i<n; ++i) ������������ Console.Write(arr[i]+ " " ); �������� Console.Read(); ���� } � ����� // Driver program ���� public static void Main() ���� { �������� int [] arr = {12, 11, 13, 5, 6, 7}; �������� int n = arr.Length; � ��������� HeapSort ob = new HeapSort(); �������� ob.sort(arr); � ��������� Console.WriteLine( "Sorted array is" ); �������� printArray(arr); ���� } } � �// This code is contributed� // by Akanksha Rai(Abby_akku) |
chevron_right
filter_none
PHP
<?php � �// Php program for implementation of Heap Sort � �// To heapify a subtree rooted with node i which is // an index in arr[]. n is size of heap function heapify(& $arr , $n , $i ) { ���� $largest = $i ; // Initialize largest as root ���� $l = 2* $i + 1; // left = 2*i + 1 ���� $r = 2* $i + 2; // right = 2*i + 2 � ����� // If left child is larger than root ���� if ( $l < $n && $arr [ $l ] > $arr [ $largest ]) �������� $largest = $l ; � ����� // If right child is larger than largest so far ���� if ( $r < $n && $arr [ $r ] > $arr [ $largest ]) �������� $largest = $r ; � ����� // If largest is not root ���� if ( $largest != $i ) ���� { �������� $swap = $arr [ $i ]; �������� $arr [ $i ] = $arr [ $largest ]; �������� $arr [ $largest ] = $swap ; � ��������� // Recursively heapify the affected sub-tree �������� heapify( $arr , $n , $largest ); ���� } } � �// main function to do heap sort function heapSort(& $arr , $n ) { ���� // Build heap (rearrange array) ���� for ( $i = $n / 2 - 1; $i >= 0; $i --) �������� heapify( $arr , $n , $i ); � ����� // One by one extract an element from heap ���� for ( $i = $n -1; $i >= 0; $i --) ���� { �������� // Move current root to end �������� $temp = $arr [0]; ������������ $arr [0] = $arr [ $i ]; ������������ $arr [ $i ] = $temp ; � ��������� // call max heapify on the reduced heap �������� heapify( $arr , $i , 0); ���� } } � �/* A utility function to print array of size n */ function printArray(& $arr , $n ) { ���� for ( $i = 0; $i < $n ; ++ $i ) �������� echo ( $arr [ $i ]. " " ) ;� ��������� �}� � �// Driver program ���� $arr = array (12, 11, 13, 5, 6, 7); ���� $n = sizeof( $arr )/sizeof( $arr [0]); � ����� heapSort( $arr , $n ); � ����� echo 'Sorted array is ' . "\n" ; ����� ����� printArray( $arr , $n ); � �// This code is contributed by Shivi_Aggarwal ?> |
chevron_right
filter_none
Output:
Sorted array is
5 6 7 11 12 13
Here is previous C code for reference.
Notes:
Heap sort is an in-place algorithm.
Its typical implementation is not stable, but can be made stable (See this)
Time Complexity: Time complexity of heapify is O(Logn). Time complexity of createAndBuildHeap() is O(n) and overall time complexity of Heap Sort is O(nLogn).
Applications of HeapSort
1. Sort a nearly sorted (or K sorted) array
2. k largest(or smallest) elements in an array
Heap sort algorithm has limited uses because Quicksort and Mergesort are better in practice. Nevertheless, the Heap data structure itself is enormously used. See Applications of Heap Data Structure
�
Quiz on Heap Sort
Other Sorting Algorithms on GeeksforGeeks/GeeksQuiz:
QuickSort, Selection Sort, Bubble Sort, Insertion Sort, Merge Sort, Heap Sort, QuickSort, Radix Sort, Counting Sort, Bucket Sort, ShellSort, Comb Sort, Pigeonhole Sort
�
Coding practice for sorting.
�
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
Recommended Posts:
- Iterative HeapSort
- Choose n elements such that their mean is maximum
- Minimum Numbers of cells that are connected with the smallest path between 3 given cells
- Oracle Interview Experience (On-Campus for APPS Profile)
- Maximum number of leaf nodes that can be visited within the given budget
- Number of pairs whose sum is a power of 2
- [24]7 Innovation Labs Interview Experience (6 Months Experience)
- Python | Sort list of list by specified index
- Smallest subarray containing minimum and maximum values
- Sort the array of strings according to alphabetical order defined by another string
- Minimum number of consecutive sequences that can be formed in an array
- Leftmost and rightmost indices of the maximum and the minimum element of an array
- Average of remaining elements after removing K largest and K smallest elements from array
- SAP Labs India Interview Experience (On Campus)
No comments:
Post a Comment