Breadth First Search or BFS for a Graph
Breadth First Traversal (or Search) for a graph is similar to Breadth First Traversal of a tree (See method 2 of this post). The only catch here is, unlike trees, graphs may contain cycles, so we may come to the same node again. To avoid processing a node more than once, we use a boolean visited array. For simplicity, it is assumed that all vertices are reachable from the starting vertex.
For example, in the following graph, we start traversal from vertex 2. When we come to vertex 0, we look for all adjacent vertices of it. 2 is also an adjacent vertex of 0. If we don?t mark visited vertices, then 2 will be processed again and it will become a non-terminating process. A Breadth First Traversal of the following graph is 2, 0, 3, 1.
Following are the implementations of simple Breadth First Traversal from a given source.
The implementation uses adjacency list representation of graphs. STL?s list container is used to store lists of adjacent nodes and queue of nodes needed for BFS traversal.
C++
// Program to print BFS traversal from a given // source vertex. BFS(int s) traverses vertices� // reachable from s. #include<iostream> #include <list> � �using namespace std; � �// This class represents a directed graph using // adjacency list representation class Graph { ���� int V;��� // No. of vertices � ����� // Pointer to an array containing adjacency ���� // lists ���� list< int > *adj;��� public : ���� Graph( int V);� // Constructor � ����� // function to add an edge to graph ���� void addEdge( int v, int w);� � ����� // prints BFS traversal from a given source s ���� void BFS( int s);�� }; � �Graph::Graph( int V) { ���� this ->V = V; ���� adj = new list< int >[V]; } � �void Graph::addEdge( int v, int w) { ���� adj[v].push_back(w); // Add w to v?s list. } � �void Graph::BFS( int s) { ���� // Mark all the vertices as not visited ���� bool *visited = new bool [V]; ���� for ( int i = 0; i < V; i++) �������� visited[i] = false ; � ����� // Create a queue for BFS ���� list< int > queue; � ����� // Mark the current node as visited and enqueue it ���� visited[s] = true ; ���� queue.push_back(s); � ����� // 'i' will be used to get all adjacent ���� // vertices of a vertex ���� list< int >::iterator i; � ����� while (!queue.empty()) ���� { �������� // Dequeue a vertex from queue and print it �������� s = queue.front(); �������� cout << s << " " ; �������� queue.pop_front(); � ��������� // Get all adjacent vertices of the dequeued �������� // vertex s. If a adjacent has not been visited,� �������� // then mark it visited and enqueue it �������� for (i = adj[s].begin(); i != adj[s].end(); ++i) �������� { ������������ if (!visited[*i]) ������������ { ���������������� visited[*i] = true ; ���������������� queue.push_back(*i); ������������ } �������� } ���� } } � �// Driver program to test methods of graph class int main() { ���� // Create a graph given in the above diagram ���� Graph g(4); ���� g.addEdge(0, 1); ���� g.addEdge(0, 2); ���� g.addEdge(1, 2); ���� g.addEdge(2, 0); ���� g.addEdge(2, 3); ���� g.addEdge(3, 3); � ����� cout << "Following is Breadth First Traversal " ��������� << "(starting from vertex 2) \n" ; ���� g.BFS(2); � ����� return 0; } |
chevron_right
filter_none
Java
// Java program to print BFS traversal from a given source vertex. // BFS(int s) traverses vertices reachable from s. import java.io.*; import java.util.*; � �// This class represents a directed graph using adjacency list // representation class Graph { ���� private int V;�� // No. of vertices ���� private LinkedList<Integer> adj[]; //Adjacency Lists � ����� // Constructor ���� Graph( int v) ���� { �������� V = v; �������� adj = new LinkedList[v]; �������� for ( int i= 0 ; i<v; ++i) ������������ adj[i] = new LinkedList(); ���� } � ����� // Function to add an edge into the graph ���� void addEdge( int v, int w) ���� { �������� adj[v].add(w); ���� } � ����� // prints BFS traversal from a given source s ���� void BFS( int s) ���� { �������� // Mark all the vertices as not visited(By default �������� // set as false) �������� boolean visited[] = new boolean [V]; � ��������� // Create a queue for BFS �������� LinkedList<Integer> queue = new LinkedList<Integer>(); � ��������� // Mark the current node as visited and enqueue it �������� visited[s]= true ; �������� queue.add(s); � ��������� while (queue.size() != 0 ) �������� { ������������ // Dequeue a vertex from queue and print it ������������ s = queue.poll(); ������������ System.out.print(s+ " " ); � ������������� // Get all adjacent vertices of the dequeued vertex s ������������ // If a adjacent has not been visited, then mark it ������������ // visited and enqueue it ������������ Iterator<Integer> i = adj[s].listIterator(); ������������ while (i.hasNext()) ������������ { ���������������� int n = i.next(); ���������������� if (!visited[n]) ���������������� { �������������������� visited[n] = true ; �������������������� queue.add(n); ���������������� } ������������ } �������� } ���� } � ����� // Driver method to ���� public static void main(String args[]) ���� { �������� Graph g = new Graph( 4 ); � ��������� g.addEdge( 0 , 1 ); �������� g.addEdge( 0 , 2 ); �������� g.addEdge( 1 , 2 ); �������� g.addEdge( 2 , 0 ); �������� g.addEdge( 2 , 3 ); �������� g.addEdge( 3 , 3 ); � ��������� System.out.println( "Following is Breadth First Traversal " + ��������������������������� "(starting from vertex 2)" ); � ��������� g.BFS( 2 ); ���� } } // This code is contributed by Aakash Hasija |
chevron_right
filter_none
Python3
# Python3 Program to print BFS traversal # from a given source vertex. BFS(int s) # traverses vertices reachable from s. from collections import defaultdict � �# This class represents a directed graph # using adjacency list representation class Graph: � ����� # Constructor ���� def __init__( self ): � ��������� # default dictionary to store graph �������� self .graph = defaultdict( list ) � ����� # function to add an edge to graph ���� def addEdge( self ,u,v): �������� self .graph[u].append(v) � ����� # Function to print a BFS of graph ���� def BFS( self , s): � ��������� # Mark all the vertices as not visited �������� visited = [ False ] * ( len ( self .graph)) � ��������� # Create a queue for BFS �������� queue = [] � ��������� # Mark the source node as� �������� # visited and enqueue it �������� queue.append(s) �������� visited[s] = True � ��������� while queue: � ������������� # Dequeue a vertex from� ������������ # queue and print it ������������ s = queue.pop( 0 ) ������������ print (s, end = " " ) � ������������� # Get all adjacent vertices of the ������������ # dequeued vertex s. If a adjacent ������������ # has not been visited, then mark it ������������ # visited and enqueue it ������������ for i in self .graph[s]: ���������������� if visited[i] = = False : �������������������� queue.append(i) �������������������� visited[i] = True � �# Driver code � �# Create a graph given in # the above diagram g = Graph() g.addEdge( 0 , 1 ) g.addEdge( 0 , 2 ) g.addEdge( 1 , 2 ) g.addEdge( 2 , 0 ) g.addEdge( 2 , 3 ) g.addEdge( 3 , 3 ) � �print ( "Following is Breadth First Traversal" ������������������ " (starting from vertex 2)" ) g.BFS( 2 ) � �# This code is contributed by Neelam Yadav |
chevron_right
filter_none
Output:
Following is Breadth First Traversal (starting from vertex 2)
2 0 3 1
Illustration :
Note that the above code traverses only the vertices reachable from a given source vertex. All the vertices may not be reachable from a given vertex (example Disconnected graph). To print all the vertices, we can modify the BFS function to do traversal starting from all nodes one by one (Like the DFS modified version) .
Time Complexity: O(V+E) where V is number of vertices in the graph and E is number of edges in the graph.
You may like to see below also :
- Recent Articles on BFS
- Depth First Traversal
- Applications of Breadth First Traversal
- Applications of Depth First Search
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
Recommended Posts:
- Depth First Search or DFS for a Graph
- Finding minimum vertex cover size of a graph using binary search
- Applications of Breadth First Traversal
- Graph implementation using STL for competitive programming | Set 2 (Weighted graph)
- Best First Search (Informed Search)
- Iterative Deepening Search(IDS) or Iterative Deepening Depth First Search(IDDFS)
- Sum of dependencies in a graph
- Hypercube Graph
- Bridges in a graph
- Biconnected graph
- Dominant Set of a Graph
- BFS for Disconnected Graph
- Transpose graph
- Graph and its representations
- Clone an Undirected Graph
No comments:
Post a Comment