Merge a linked list into another linked list at alternate positions
Given two linked lists, insert nodes of second list into first list at alternate positions of first list.
For example, if first list is 5->7->17->13->11 and second is 12->10->2->4->6, the first list should become 5->12->7->10->17->2->13->4->11->6 and second list should become empty. The nodes of second list should only be inserted when there are positions available. For example, if the first list is 1->2->3 and second list is 4->5->6->7->8, then first list should become 1->4->2->5->3->6 and second list to 7->8.
Use of extra space is not allowed (Not allowed to create additional nodes), i.e., insertion must be done in-place. Expected time complexity is O(n) where n is number of nodes in first list.
The idea is to run a loop while there are available positions in first loop and insert nodes of second list by changing pointers. Following are C and Java implementations of this approach.
C/C++
// C program to merge a linked list into another at // alternate positions #include <stdio.h> #include <stdlib.h> � �// A nexted list node struct Node { ���� int data; ���� struct Node *next; }; � �/* Function to insert a node at the beginning */ void push( struct Node ** head_ref, int new_data) { ���� struct Node* new_node =� ����������� ( struct Node*) malloc ( sizeof ( struct Node)); ���� new_node->data� = new_data; ���� new_node->next = (*head_ref); ���� (*head_ref)� = new_node; } � �/* Utility function to print a singly linked list */ void printList( struct Node *head) { ���� struct Node *temp = head; ���� while (temp != NULL) ���� { �������� printf ( "%d " , temp->data); �������� temp = temp->next; ���� } ���� printf ( "\n" ); } � �// Main function that inserts nodes of linked list q into p at� // alternate positions. Since head of first list never changes� // and head of second list� may change, we need single pointer // for first list and double pointer for second list. void merge( struct Node *p, struct Node **q) { ����� struct Node *p_curr = p, *q_curr = *q; ����� struct Node *p_next, *q_next; � ������ // While therre are avialable positions in p ����� while (p_curr != NULL && q_curr != NULL) ����� { ��������� // Save next pointers ��������� p_next = p_curr->next; ��������� q_next = q_curr->next; � ���������� // Make q_curr as next of p_curr ��������� q_curr->next = p_next;� // Change next pointer of q_curr ��������� p_curr->next = q_curr;� // Change next pointer of p_curr � ���������� // Update current pointers for next iteration ��������� p_curr = p_next; ��������� q_curr = q_next; ���� } � ����� *q = q_curr; // Update head pointer of second list } � �// Driver program to test above functions int main() { ����� struct Node *p = NULL, *q = NULL; ����� push(&p, 3); ����� push(&p, 2); ����� push(&p, 1); ����� printf ( "First Linked List:\n" ); ����� printList(p); � ������ push(&q, 8); ����� push(&q, 7); ����� push(&q, 6); ����� push(&q, 5); ����� push(&q, 4); ����� printf ( "Second Linked List:\n" ); ����� printList(q); � ������ merge(p, &q); � ������ printf ( "Modified First Linked List:\n" ); ����� printList(p); � ������ printf ( "Modified Second Linked List:\n" ); ����� printList(q); � ������ getchar (); ����� return 0; } |
chevron_right
filter_none
Java
// Java program to merge a linked list into another at // alternate positions class LinkedList { ���� Node head;� // head of list � ����� /* Linked list Node*/ ���� class Node ���� { �������� int data; �������� Node next; �������� Node( int d) {data = d; next = null ; } ���� } � ����� /* Inserts a new Node at front of the list. */ ���� void push( int new_data) ���� { �������� /* 1 & 2: Allocate the Node & ������������������ Put in the data*/ �������� Node new_node = new Node(new_data); � ��������� /* 3. Make next of new Node as head */ �������� new_node.next = head; � ��������� /* 4. Move the head to point to new Node */ �������� head = new_node; ���� } � ����� // Main function that inserts nodes of linked list q into p at ���� // alternate positions. Since head of first list never changes ���� // and head of second list/ may change, we need single pointer ���� // for first list and double pointer for second list. ���� void merge(LinkedList q) ���� { �������� Node p_curr = head, q_curr = q.head; �������� Node p_next, q_next; � ��������� // While there are available positions in p; �������� while (p_curr != null && q_curr != null ) { � ������������� // Save next pointers ������������ p_next = p_curr.next; ������������ q_next = q_curr.next; � ������������� // make q_curr as next of p_curr ������������ q_curr.next = p_next; // change next pointer of q_curr ������������ p_curr.next = q_curr; // change next pointer of p_curr � ������������� // update current pointers for next iteration ������������ p_curr = p_next; ������������ q_curr = q_next; �������� } �������� q.head = q_curr; ���� } � ����� /* Function to print linked list */ ���� void printList() ���� { �������� Node temp = head; �������� while (temp != null ) �������� { ����������� System.out.print(temp.data+ " " ); ����������� temp = temp.next; �������� } �������� System.out.println(); ���� } � ����� /* Drier program to test above functions */ ���� public static void main(String args[]) ���� { �������� LinkedList llist1 = new LinkedList(); �������� LinkedList llist2 = new LinkedList(); �������� llist1.push( 3 ); �������� llist1.push( 2 ); �������� llist1.push( 1 ); � ��������� System.out.println( "First Linked List:" ); �������� llist1.printList(); � ��������� llist2.push( 8 ); �������� llist2.push( 7 ); �������� llist2.push( 6 ); �������� llist2.push( 5 ); �������� llist2.push( 4 ); � ��������� System.out.println( "Second Linked List:" ); � ��������� llist1.merge(llist2); � ��������� System.out.println( "Modified first linked list:" ); �������� llist1.printList(); � ��������� System.out.println( "Modified second linked list:" ); �������� llist2.printList(); ���� } } /* This code is contributed by Rajat Mishra */ |
chevron_right
filter_none
Python
# Python program to merge a linked list into another at # alternate positions class LinkedList( object ): ���� def __init__( self ): ���� # head of list �������� self .head = None � ����� # Linked list Node ���� class Node( object ): �������� def __init__( self , d): ������������ self .data = d ������������ self . next = None � ����� # Inserts a new Node at front of the list. ���� def push( self , new_data): � ��������� # 1 & 2: Allocate the Node & �������� # Put in the data �������� new_node = self .Node(new_data) � ��������� # 3. Make next of new Node as head �������� new_node. next = self .head � ��������� # 4. Move the head to point to new Node �������� self .head = new_node � ����� # Main function that inserts nodes of linked list q into p at ���� # alternate positions. Since head of first list never changes ���� # and head of second list/ may change, we need single pointer ���� # for first list and double pointer for second list. ���� def merge( self , q): �������� p_curr = self .head �������� q_curr = q.head � ��������� # While there are available positions in p; �������� while p_curr ! = None and q_curr ! = None : � ������������� # Save next pointers ������������ p_next = p_curr. next ������������ q_next = q_curr. next � ������������� # make q_curr as next of p_curr ������������ q_curr. next = p_next # change next pointer of q_curr ������������ p_curr. next = q_curr # change next pointer of p_curr � ������������� # update current pointers for next iteration ������������ p_curr = p_next ������������ q_curr = q_next �������� q.head = q_curr � ����� # Function to print linked list ���� def printList( self ): �������� temp = self .head �������� while temp ! = None : ������������ print str (temp.data), ������������ temp = temp. next �������� print '' � �# Driver program to test above functions llist1 = LinkedList() llist2 = LinkedList() llist1.push( 3 ) llist1.push( 2 ) llist1.push( 1 ) � �print "First Linked List:" llist1.printList() � �llist2.push( 8 ) llist2.push( 7 ) llist2.push( 6 ) llist2.push( 5 ) llist2.push( 4 ) � �print "Second Linked List:" � �llist2.printList() llist1.merge(llist2) � �print "Modified first linked list:" llist1.printList() � �print "Modified second linked list:" llist2.printList() � �# This code is contributed by BHAVYA JAIN |
chevron_right
filter_none
Output:
First Linked List:
1 2 3
Second Linked List:
4 5 6 7 8
Modified First Linked List:
1 4 2 5 3 6
Modified Second Linked List:
7 8
This article is contributed by Chandra Prakash. Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
Recommended Posts:
- Deletion at different positions in a Circular Linked List
- Sum of the alternate nodes of linked list
- Alternate sorting of Linked list
- Product of the alternate nodes of linked list
- Delete alternate nodes of a Linked List
- Rearrange a linked list in to alternate first and last element
- Alternate Odd and Even Nodes in a Singly Linked List
- Reverse alternate K nodes in a Singly Linked List
- Print alternate nodes of a linked list using recursion
- Given a linked list, reverse alternate nodes and append at the end
- Iterative Merge Sort for Linked List
- Merge Sort for Doubly Linked List
- Merge two sorted linked list without duplicates
- Print the alternate nodes of linked list (Iterative Method)
- In-place Merge two linked lists without changing links of first list
No comments:
Post a Comment