Find the smallest positive integer value that cannot be represented as sum of any subset of a given array






Given a sorted array (sorted in non-decreasing order) of positive numbers, find the smallest positive integer value that cannot be represented as sum of elements of any subset of given set.

Expected time complexity is O(n).


Examples:


Input:  arr[] = {1, 3, 6, 10, 11, 15};
Output: 2

Input: arr[] = {1, 1, 1, 1};
Output: 5

Input: arr[] = {1, 1, 3, 4};
Output: 10

Input: arr[] = {1, 2, 5, 10, 20, 40};
Output: 4

Input: arr[] = {1, 2, 3, 4, 5, 6};
Output: 22










A Simple Solution is to start from value 1 and check all values one by one if they can sum to values in the given array. This solution is very inefficient as it reduces to subset sum problem which is a well known NP Complete Problem.


We can solve this problem in O(n) time using a simple loop. Let the input array be arr[0..n-1]. We initialize the result as 1 (smallest possible outcome) and traverse the given array. Let the smallest element that cannot be represented by elements at indexes from 0 to (i-1) be ?res?, there are following two possibilities when we consider element at index i:


1) We decide that ?res? is the final result: If arr[i] is greater than ?res?, then we found the gap which is ?res? because the elements after arr[i] are also going to be greater than ?res?.


2) The value of ?res? is incremented after considering arr[i]: The value of ?res? is incremented by arr[i] (why? If elements from 0 to (i-1) can represent 1 to ?res-1?, then elements from 0 to i can represent from 1 to ?res + arr[i] ? 1? be adding ?arr[i]? to all subsets that represent 1 to ?res?)


Following is the implementation of above idea.


C++









filter_none



edit

close



play_arrow



link

brightness_4

code















// C++ program to find the smallest positive value that cannot be

// represented as sum of subsets of a given sorted array

#include <iostream>

using namespace std;


// Returns the smallest number that cannot be represented as sum

// of subset of elements from set represented by sorted array arr[0..n-1]

int findSmallest(int arr[], int n)

{

���int res = 1; // Initialize result


���// Traverse the array and increment 'res' if arr[i] is

���// smaller than or equal to 'res'.

���for (int i = 0; i < n && arr[i] <= res; i++)

�������res = res + arr[i];


���return res;

}


// Driver program to test above function

int main()

{

���int arr1[] = {1, 3, 4, 5};

���int n1 = sizeof(arr1)/sizeof(arr1[0]);

���cout << findSmallest(arr1, n1) << endl;


���int arr2[] = {1, 2, 6, 10, 11, 15};

���int n2 = sizeof(arr2)/sizeof(arr2[0]);

���cout << findSmallest(arr2, n2) << endl;


���int arr3[] = {1, 1, 1, 1};

���int n3 = sizeof(arr3)/sizeof(arr3[0]);

���cout << findSmallest(arr3, n3) << endl;


���int arr4[] = {1, 1, 3, 4};

���int n4 = sizeof(arr4)/sizeof(arr4[0]);

���cout << findSmallest(arr4, n4) << endl;


���return 0;

}








chevron_right







Java









filter_none



edit

close



play_arrow



link

brightness_4

code















// Java program to find the smallest positive value that cannot be

// represented as sum of subsets of a given sorted array

class FindSmallestInteger�

{

����// Returns the smallest number that cannot be represented as sum

����// of subset of elements from set represented by sorted array arr[0..n-1]

����int findSmallest(int arr[], int n)�

����{

��������int res = 1; // Initialize result


��������// Traverse the array and increment 'res' if arr[i] is

��������// smaller than or equal to 'res'.

��������for (int i = 0; i < n && arr[i] <= res; i++)

������������res = res + arr[i];


��������return res;

����}


����// Driver program to test above functions

����public static void main(String[] args)�

����{

��������FindSmallestInteger small = new FindSmallestInteger();

��������int arr1[] = {1, 3, 4, 5};

��������int n1 = arr1.length;

��������System.out.println(small.findSmallest(arr1, n1));


��������int arr2[] = {1, 2, 6, 10, 11, 15};

��������int n2 = arr2.length;

��������System.out.println(small.findSmallest(arr2, n2));


��������int arr3[] = {1, 1, 1, 1};

��������int n3 = arr3.length;

��������System.out.println(small.findSmallest(arr3, n3));


��������int arr4[] = {1, 1, 3, 4};

��������int n4 = arr4.length;

��������System.out.println(small.findSmallest(arr4, n4));


����}

}


// This code has been contributed by Mayank Jaiswal(mayank_24)








chevron_right







Python3









filter_none



edit

close



play_arrow



link

brightness_4

code















# Python3 program to find the smallest

# positive value that cannot be

# represented as sum of subsets�

# of a given sorted array


# Returns the smallest number�

# that cannot be represented as sum

# of subset of elements from set

# represented by sorted array arr[0..n-1]

def findSmallest(arr, n):


����res = 1 #Initialize result


����# Traverse the array and increment

����# 'res' if arr[i] is smaller than

����# or equal to 'res'.

����for i in range (0, n ):

��������if arr[i] <= res:

������������res = res + arr[i]

��������else:

������������break

����return res



# Driver program to test above function

arr1 = [1, 3, 4, 5]

n1 = len(arr1)

print(findSmallest(arr1, n1))


arr2= [1, 2, 6, 10, 11, 15]

n2 = len(arr2)

print(findSmallest(arr2, n2))


arr3= [1, 1, 1, 1]

n3 = len(arr3)

print(findSmallest(arr3, n3))


arr4 = [1, 1, 3, 4]

n4 = len(arr4)

print(findSmallest(arr4, n4))


# This code is.contributed by Smitha Dinesh Semwal








chevron_right







C#









filter_none



edit

close



play_arrow



link

brightness_4

code















// C# program to find the smallest

// positive value that cannot be

// represented as sum of subsets�

// of a given sorted array

using System;


class GFG {

�����

����// Returns the smallest number that

����// cannot be represented as sum

����// of subset of elements from set�

����// represented by sorted array

����// arr[0..n-1]

����static int findSmallest(int []arr, int n)�

����{

���������// Initialize result

���������int res = 1;


��������// Traverse the array and�

��������// increment 'res' if arr[i] is

��������// smaller than or equal to 'res'.

��������for (int i = 0; i < n &&�

�������������arr[i] <= res; i++)

������������res = res + arr[i];


��������return res;

����}


����// Driver code

����public static void Main()�

����{

��������int []arr1 = {1, 3, 4, 5};

��������int n1 = arr1.Length;

��������Console.WriteLine(findSmallest(arr1, n1));


��������int []arr2 = {1, 2, 6, 10, 11, 15};

��������int n2 = arr2.Length;

��������Console.WriteLine(findSmallest(arr2, n2));


��������int []arr3 = {1, 1, 1, 1};

��������int n3 = arr3.Length;

��������Console.WriteLine(findSmallest(arr3, n3));


��������int []arr4 = {1, 1, 3, 4};

��������int n4 = arr4.Length;

��������Console.WriteLine(findSmallest(arr4, n4));


����}

}


// This code is contributed by Sam007








chevron_right







PHP









filter_none



edit

close



play_arrow



link

brightness_4

code















<?php

// PHP program to find the smallest

// positive value that cannot be

// represented as sum of subsets

// of a given sorted array


// Returns the smallest number that

// cannot be represented as sum of�

// subset of elements from set

// represented by sorted array�

// arr[0..n-1]

function findSmallest($arr, $n)

{

�����

����// Initialize result

����$res = 1;�

�����

����// Traverse the array and�

����// increment 'res' if arr[i] is

����// smaller than or equal to 'res'.

����for($i = 0; $i < $n and $arr[$i] <= $res; $i++)

��������$res = $res + $arr[$i];

�����

����return $res;

}


// Driver Code

$arr1 = array(1, 3, 4, 5);

$n1 = count($arr1);

echo findSmallest($arr1, $n1),"\n";


$arr2 = array(1, 2, 6, 10, 11, 15);

$n2 = count($arr2);

echo findSmallest($arr2, $n2),"\n" ;


$arr3 = array(1, 1, 1, 1);

$n3 = count($arr3);

echo findSmallest($arr3, $n3),"\n";


$arr4 = array(1, 1, 3, 4);

$n4 = count($arr4);

echo findSmallest($arr4, $n4);


// This code is contributed by anuj_67.

?>








chevron_right








Output:


2
4
5
10

Time Complexity of above program is O(n).


This article is contributed by Rahul Gupta. Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.











My Personal Notes
arrow_drop_up









Improved By : Sam007, vt_m












Article Tags :
Practice Tags :





3


















Please write to us at contribute@ramthoughts.org to report any issue with the above content.